
1 
 

Spectral replacement using machine learning methods for continuous 
mapping of Geostationary Environment Monitoring Spectrometer 
(GEMS) 
Yeeun Lee1, Myoung-Hwan Ahn1, Mina Kang1, Mijin Eo1 
1Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea 5 

Correspondence to: Myoung-Hwan Ahn (terryahn65@ewha.ac.kr) 

Abstract. Earth radiance in the form of hyperspectral data contains useful information on atmospheric constituents and aerosol 

properties. The Geostationary Environment Monitoring Spectrometer (GEMS) is an environmental sensor measuring such 

hyperspectral data in the ultraviolet and visible (UV/VIS) spectral range over the Asia-Pacific region. After successful 

completion of the in orbit test of GEMS in October 2020, bad pixels are found as a remaining calibration issue to be updated 10 

with follow-up treatment. Currently, one-dimensional interpolation in the spatial direction is performed in operation to replace 

the erroneous pixels of GEMS, which causes high interpolation error for a wider defect area on a detector array. To resolve 

the issue, this study suggests machine learning methods with artificial neural network (ANN) and multivariate linear regression 

(Linear) to fill in a spectral gap of defective spectra. The machine learning models are trained with normal measurements to 

emulate spectral relations between input and output radiances in a spectrum. For efficient training, dimensionality reduction 15 

for the input radiances is applied with principal component analysis (PCA) prior to the training process. The results show that 

the defect area at the wavelengths of strong absorption lines is better replaced with PCA-ANN with the error of 5%, while 

PCA-Linear is better for reproducing radiances having strong correlation with input radiances. The shorter the spectral range 

of output radiances is, the smaller the prediction error is with PCA-Linear (0.5-5%). Spectral and spatial discontinuity caused 

by real bad pixels can be significantly improved with the trained machine learning models especially for wide defect areas. 20 

This study verifies that spectral relations of radiances in the UV/VIS spectrum are successfully reproduced with a simple 

machine learning model, which has high potential to be investigated further for enhancing measurement quality of 

environmental satellite measurements. 

1 Introduction 

Earth radiance contains useful information on the chemical composition in the atmosphere, especially when it is measured in 25 

the form of many contiguous spectral bands. This type of measurement is referred to as ‘hyperspectral’ (Goetz et al., 1985), 

because it is frequently sampled with high spectral resolution to accurately describe absorption lines of a targeted gaseous or 

particulate component (Boersma et al., 2004; Kang et al., 2020; Manolakis et al., 2019; Pan et al., 2017). The Geostationary 

Environment Monitoring Spectrometer (GEMS) on-board the Geostationary Korea Multi-Purpose Satellite-2B (GEO-
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KOMPSAT-2B) is an environmental sensor providing such a hyperspectral measurement in the ultraviolet and visible (UV/VIS) 30 

spectral region from 300 to 500 nm with a spectral resolution of finer than 0.6 nm (Kim et al., 2020). Following the launch of 

the satellite in February 2020, the in orbit test (IOT) of GEMS was successfully completed in October 2020 with some issues 

to be continuously monitored. The root cause of each issue is to be examined with collected long-term measurements, as it has 

been dealt with for other polar orbit sensors having similar sensor characteristics (Ludewig et al., 2020; Pan et al., 2019, 2020; 

Schenkeveld et al., 2017). 35 

One of the issues to be periodically monitored is about bad pixels, which refer to anomalous pixels having hot, cold, 

noisy or drifted readout values in raw data (Lo´pez-Alonso and Alda, 2002). The definition of bad pixels is not universal, and 

in this paper, it refers to all kinds of pixels presenting abnormal observation features. Bad pixel detection is based on sensor 

characterization by sorting out erroneous signals from normal trend. A few hot pixels were flagged as bad pixels during on-

ground tests for GEMS and additional pixels have been sorted out during the IOT because of the impacts from the launch of 40 

the satellite and different environment conditions in space. The number of bad pixels tends to increase as time goes by (Kieffer, 

1996), which indicates a significant number of bad pixels could affect to the measurement quality during the operation period 

of GEMS. 

Following the bad pixel detection, replacement of measurements on bad pixel positions needs to be performed. There 

are various ways to replace the measurements on bad pixels (Boldrini et al., 2012; Burger, 2009; Rankin et al., 2018), and in 45 

the GEMS calibration system, it adopts one-dimensional spatial interpolation on the detector (Fischer et al., 2007; Schläpfer 

et al., 2007). However, the approach showed its limitation during the IOT, when an area consisting of bad pixels is quite large 

and the adjacent pixels valid for spatial interpolation are too far from the erroneous area. Especially, when a scene on the earth 

dramatically changes, discontinuity caused by the interpolation becomes larger. This phenomenon affects to not only spatial 

discontinuity on two-dimensional measurements, but also to a retrieval process using the spectral features contaminated by 50 

bad pixels (Marchetti et al., 2019).  

In this respect, this study suggests machine learning methods to replace bad pixels on the radiance level using valid 

spectral features of normal measurements. As a way of replacement, we compare machine learning approaches using artificial 

neural network (ANN) and multivariate linear regression. Theoretically, it has been verified that ANN can accurately emulate 

non-linear relations with a simple model structure when there are a large number of training data (Cybenko, 1989; Hornik et 55 

al., 1989). Machine learning methods have a high chance to successfully process hyperspectral data because the abundant 

datasets make training process more effective after breaking the curse of dimensionality with a proper pre-processing step 

(Gewali et al., 2018). Principle component analysis (PCA) is applied in this study, as it is useful to extract important 

information from hyperspectral measurements (Bajorski, 2011).  

In remote sensing, the majority of researches on hyperspectral measurements has employed machine learning as a 60 

proxy of the radiative transfer model to retrieve geophysical state values with measured spectral radiances (Hedelt et al., 2019; 

Loyola et al., 2018; Zhu et al., 2018). There are fewer approaches applied to obtain radiation flux (Dorvlo et al., 2002; Zarzalejo 

et al., 2005) and even much fewer to obtain hyperspectral radiances for different purposes such as to accurately quantify 
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radiative forcing in climate system (Taylor et al., 2016), increase spectral resolution (Le et al., 2020) and fill in a spectral gap 

for inter-calibration (Wu et al., 2018). A monochromatic radiance itself rarely contains any important meaning and thus seldom 65 

has it been a final target for machine learning. In this study, however, radiance at each wavelength of a targeted spectral region 

is a significant output for continuous mapping of GEMS measurements.  

The following sections are organized as follows. Section 2 introduces sensor specification of GEMS including an 

overview of bad pixel detection and replacement methods of GEMS. In the section, a general description of machine learning 

models suggested in this study is introduced as well as the model structure and hyperparameter. Section 3 contains model 70 

optimization results and error analysis for wide defect regions. With the optimized model, bad pixel replacement is performed 

to real spectra contaminated by bad pixels and it is compared with linear interpolation, the operational method for replacing 

bad pixels of GEMS. In Sect. 4, conclusions are presented with limitations as well as further applications in the future study. 

2 Data and methods 

2.1 Data description 75 

2.1.1 GEMS 

GEMS is a UV/VIS imaging spectrometer in geostationary orbit observing the Asia-Pacific region (5° S-45° N, 75° E-145° E) 

with high spatial and spectral resolution to retrieve key atmospheric constituents such as O3, SO2, NO2, HCHO and aerosol 

properties (Level 2) (Kim et al., 2020). The observation targets of GEMS are the Sun (irradiance mode) and the earth (radiance 

mode) and the description for each measurement mode is summarized in Table 1. GEMS observes the Sun on the purpose of 80 

calibration once a day with a premise of the measured solar irradiance being stable and nearly time independent. For earth 

measurements, GEMS scans the earth around 700 times within 30 minutes from east to west to cover the full field of regard 

(FOR) of GEMS. In both measurement modes, incident light from a scene passing through a fore-optics and spectrometer 

reaches to a two-dimensional detector array, the charge-coupled device (CCD) detector. The CCD of GEMS comprises 2,048 

rows and 1,033 columns along the spatial direction from north to south (N-S) and the spectral direction with a sampling interval 85 

of 0.2 nm, respectively.  
Table 1 Top level measurement specifications of GEMS 

Measurement mode Solar irradiance Earth radiance 
Data dimension 

[spectral, spatial, scan] [1033, 2048] [1033, 2048, 695] 
(nominal scene) 

Spectral range [nm] 300-500 
Spectral sampling 

[nm/pixel] 0.20 

Spectral resolution 
[nm] < 0.60 

Spatial resolution [km2] - 3.5 × 8 

https://doi.org/10.5194/amt-2022-37
Preprint. Discussion started: 17 February 2022
c© Author(s) 2022. CC BY 4.0 License.



4 
 

(spatial × scan) 
Measurement 

frequency 
Once a day 

(13:00 UTC) 
Every hour 

(00:45-07:45 UTC) 

2.1.2 Bad pixel 

Bad pixel detection is generally performed with dark-current measurements, which are taken without exposure to light for a 

certain integration time (Howell, 2006). Figure 1 illustrates bad pixel positions (in white) on the GEMS CCD detector array 90 

identified during the IOT. A cluster and distinct line shapes of bad pixels shown in Fig. 1a are initially identified during on-

ground calibration before the launch of the satellite. Following the suggestions made by the instrument developers, linear 

interpolation along the spatial (N-S) direction is applied to replace the unusable measurements on bad pixel positions. With 

such a simple procedure, a single bad pixel could be properly substituted. However, it was found during the IOT that  significant 

interpolation error could occur on the bad pixel positions denoted as Defect 1-3 (see Fig. 1b), especially when the spatial width 95 

of the invalid area is too wide as shown in Defect 2 and 3.  

 

 

 

 

(a) (b) 
Figure 1 (a) Two-dimensional bad pixel map on the GEMS CCD detector along the spectral (x-axis) and spatial direction (y-axis) and (b) 
zooming in the bad pixel positions from top to bottom row for Defect 1-3. Bad pixels are marked in white.  

This indicates the one-dimensional interpolation is ineffective to properly replace bad pixels for providing spatially 

continuous measurements. The interpolation error could also seriously affect to the Level 2 product of which the spectral fitting 100 

window is overlapped with a bad pixel area. For instance, cloud properties and aerosol effective height (AEH) of GEMS are 

retrieved from O2-O2 absorption bands around 477 nm (Choi et al., 2021; Kim et al., 2021) where the cluster of bad pixels is 

located (Defect 3). During the IOT, Defect 3 caused spatial discontinuity to the retrieved cloud and AEH distribution, which 

made the fitting window of the products modified to avoid bad pixel effects. Ozone properties are also affected by Defect 2 

(300-400 nm) as the spectral radiances within 300-380 nm are the major information for the retrieval of GEMS (Bak et al., 105 

2019).  
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To eliminate the spatial discontinuity, this study suggests machine learning methods to spectrally reproduce radiances 

on bad pixels instead of spatial interpolation as described in Fig. 2. The multivariate linear regression and ANN models are 

compared to evaluate model performance for reproducing earth radiance corresponding to the bad pixel positions of Defect 1-

3. Solar measurements have high spatial homogeneity resulting in small interpolation error even on the large bad pixel areas, 110 

and are not considered in this study.  

 

Figure 2 Schematic chart of the input (blue circle) and output pixels (red circle) on the GEMS CCD for the spatial interpolation and 
machine learning methods suggested in this study. Yellow circle indicates adjacent pixels to bad pixel position. 

2.2 Replacement approach 115 

2.2.1 General description 

Reproduction of radiances on bad pixels is based on a fact that radiances at different wavelengths for a scene are highly 

correlated with each other (Liu et al., 2006; Wu et al., 2018). If the relations can be accurately established, some missing values 

in a spectrum could be properly represented with radiances at the other wavelengths. For training, radiance spectra of various 

scenes from clear sky to bright clouds can be obtained by randomly collecting measured spectra. To emulate the relations of 120 

the input and output radiances in a spectrum, the GEMS spectra are used which are measured on normal pixels located closer 

to a bad pixel area on the detector array. The basic premise of this approach is that neighbor pixels on the detector array would 

have similar measurement characteristics. After training a model with the normal spectra, a spectral gap caused by real bad 

pixels could be reproduced through the model with the rest of a spectrum as input parameters. 

Because it is highly possible that input radiances have redundant information, PCA is applied for dimensionality 125 

reduction to compress the input radiances to low-dimensional principle components (PCs). The PCA process is given by the 

following Eq. (1): 

𝐙𝐙𝒏𝒏×𝒑𝒑 = 𝐗𝐗𝒏𝒏×𝝀𝝀𝐖𝐖𝝀𝝀×𝒑𝒑                     (1) 

where Z, X and W represents the PC scores, input and PC matrix, respectively. The PC scores matrix (Z) is obtained by 

projecting the input to the PC subspaces with W, which is obtained by applying singular value decomposition to the X. The 130 
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subscript n, 𝜆𝜆 and p means the dimension of matrix corresponding to the number of datasets, wavelengths and the number of 

PCs, respectively.  

With the compressed data, multivariate linear regression (PCA-Linear) and ANN (PCA-ANN) models are trained to 

define the relations between input (Xm) and output (Yn) radiances in a spectrum. The PCA-ANN model is constructed with a 

simple feed-forward model with a hidden layer as described in Fig. 3. In the model optimization process, the PCA-ANN model 135 

with a hidden layer showed faster and more effective convergence of loss function than the models having multi-hidden layers 

in this study. For PCA-Linear, it adopts a simple linear model structure consisting of parameters such as weight and bias having 

the minimum mean squared error (MSE) between the regressed and measured radiances. After model optimization, it can be 

used to replace bad pixels (X’m, Y’n) with radiances to be likely measured by the sensor. 

Figure 3 Schematic chart of the training and bad pixel replacement process. W and b represent weight and bias parameters in each layer. 
The subscript m, n, p and k is equal to the spectral dimension of input and output parameters, the number of PCs and hidden nodes of the 
ANN model, respectively. 

2.2.2 Input/Output and model optimization 

The input and output parameter as well as the optimized hyperparameter of the models are summarized in Table 2. Training 145 

and test data are constructed with GEMS radiance data measured in March-April 2021, which are randomly sampled out to 

update model parameter and check for overfitting, respectively. Input and output radiances are at the wavelengths with the 

spectral interval of 0.1 nm within the specified spectral ranges in Table 2. The spectral range of output radiances for Defect 1-

3 is identical to each defect region and the rest part of a spectrum becomes input radiances. The solar zenith angle (SZA) and 

viewing zenith angle (VZA) are key variables determining the optical path of upwelling radiance, which are used as input 150 

variables together with radiances. The neural network constructed with the hyperparameter setting presented in Table 2 is 

implemented with TensorFlow, a high-level Application Programming Interface (API) written in Python. As described in Fig. 

3, the activation function is the Rectified Linear Unit (ReLU) in the hidden layer of the ANN model. The structure itself is not 

complicated but it has multiple nodes in the input and output layers, which makes ReLU more competitive (Nwankpa et al., 
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2018). The hyperbolic tangent (tanh) and sigmoid function show poor results especially when the output parameters have lower 155 

variance making the optimization stuck into the averaged value and preventing the model from being updated.  
Table 2 Input and output (I/O) parameters for ANN training and hyperparameter for optimization of neural network. 

Model Parameter Defect 1 Defect 2 Defect 3 Remark 

I/O Input (Xm) 
SZA / VZA Random selection 

(100,000 for 
training and 

test data) 

300-400 nm 400-500 nm 460-483.9 / 
491.1-500 nm 

Output (Yn) 400.1-500 nm 300-399.9 nm 484-491 nm 

Hyper-
parameter 

Activation 
function ReLU  

Optimizer Adam optimizer  
Loss function Mean squared error  

Scaling Standardization  
 

For the optimizer, Adaptive Moment Estimation (Adam) is used which shows stable results compared to Stochastic 

Gradient Descent (SGD) and Root Mean Square Propagation (RMSProp) (Kingma and Ba, 2015). It is empirically found that 160 

SGD without gradient clipping tends to cause exploding gradient and RMSProp has difficulty reaching the global minima 

compared to Adam. Figure 4 presents the converging process of the PCA-ANN model for Defect 2 applying different 

optimizers. The model converges at 44, 98 and 33 epochs for Adam, SGD and RMSprop, respectively. Adam converges at the 

smallest MSE while the SGD converges with the highest MSE. RMSprop presents unstable loss for validation data and 

converges with higher MSE compared to Adam.  165 

 
Figure 4 Loss function of training and validation data for Defect 2 with different optimizers such as Adam (black), SGD with the gradient 
clipping value of 0.5 (blue) and RMSprop (orange). 
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3 Results and discussion  

3.1 Optimization results 170 

Earth radiance is determined by the interactions of light with trace gases, aerosols and clouds in the atmosphere and reflected 

properties of a scene. The magnitude of a spectrum is dominantly determined by the scene properties which result in strong 

linear relations among radiances in of a spectrum. In other words, when a scene is dark (bright), the upwelling radiances of the 

scene over the whole spectral region tend to become generally low (high). The PCA analysis performed for dimensionality 

reduction describes the characteristic with PC scores of input radiances in training data for Defect 2 (See Fig. 5). In the figure, 175 

it can be found that the first principal component (PC 1) is highly correlated with the magnitude of a spectrum represented by 

the radiance at 354 nm. This indicates that strong linear relations among radiances in a spectrum are compressed to PC 1, 

which has the largest variance. The non-linear properties caused by atmospheric scattering, absorption, different optical paths 

and sensor noise are projected onto the other PC subspaces.  

Figure 5 PC scores of input training data from 400 to 500 nm for Defect 2 after dimensionality reduction. Colorbar represents the radiance 
at 354 nm of output training data. 

Figure 6 shows model optimization results depending on specific models and the number of PCs. Because the spectral 

range of output radiances differs for each defect region (Defect 1-3), model optimization needs to be performed separately. 

The spectral range of output radiances for Defect 1 and 2 is wider than that of Defect 3 which results in higher MSE. PCA-185 

ANN seems to be unstable for Defect 1 showing over-fitted features which might be caused by unfiltered outliers in output 

radiances of GEMS at the wavelengths longer than 480 nm. It is empirically found that PCA-ANN is more vulnerable to 

outliers compared to PCA-Linear. Defect 2 is at the wavelengths where the upwelling radiances are largely affected by ozone, 

which increases non-linearity between input and output radiances. Because of the strong non-linearity, PCA-ANN shows better 

performance than PCA-Linear for Defect 2. Defect 3 has the smallest number of output parameters in a narrow spectral gap 190 
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which causes strong correlation between input and output radiances. The loss functions (MSE) in Fig. 6c are small and 

converge quickly for both PCA-ANN and PCA-Linear models. With the results, the optimized number of PCs is set to 90 for 

all defect regions when loss functions for both training and test data efficiently converge, with PCA-Linear for Defect 1 and 3 

and the PCA-ANN model for Defect 2. 

 
(a) 

 
(b) 

 
(c) 

Figure 6 Loss function depending on the number of PCs with PCA-ANN (red) and PCA-Linear (black) model for predicting the output 195 
radiances corresponding to the spectral range of Defect 1-3 ((a): Defect 1, (b): Defect 2 and (c): Defect 3). The dashed and solid line indicates 
training and test results, respectively. The number of hidden nodes for ANN is double the number of PCs. 

3.2 Statistical evaluation 

The optimized model structures for Defect 1-3 are set as described in the previous section. Following that, in this section, 

model performance is statistically evaluated with training and test datasets specified in Table 2. Figure 7 presents mean and 200 

normalized root mean squared error (NRMSE) of the predicted output radiances with training and test data. The NRMSE is a 

statistical indicator normalized by mean radiance at each wavelength and it can be found that radiances affected by strong 

absorption lines have relatively high uncertainty. Especially, information from the radiances in 400-500 nm is insufficient to 

properly represent ozone absorption features at shorter wavelengths and it causes high uncertainty at the wavelengths shorter 

than 325 nm in Defect 2. It seems that the predicted radiances at shorter wavelengths are underestimated for both training and 205 

test data especially for dark scenes which have low signal-to-noise. This indicates it could be attributed to the insufficiently 

trained model parameters or the high measurement noise of dark scenes. Defect 3 has the lowest NRMSE because of strong 

linear relations between input and output radiances as previously mentioned in Sect. 3.1. The NRMSE is less than 0.1% for 

both training and test data over the Defect 3 spectral region. The results show that it is possible to successfully reproduce 

spectral features at a narrower spectral range with simple linear regression.  210 
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(a) 

 
(b) 

Figure 7 Mean (black) and NRMSE (blue) spectra of output radiances for Defect 1-3 with (a) training and (b) test datasets measured in 
March-April 2021. The unit of NRMSE is percent [%]. 

Figure 8 shows the error histogram of each prediction model for Defect 1-3 with training and test data. The mode and 

mean of error histograms are on the order of 0.001-0.01 for test and training data. The machine learning models are good 215 

enough to properly emulate spectral relations between input and output parameters, but it is somewhat over-fitted to the training 

data causing a few outliers for the prediction of test data. Defect 2 has the largest standard deviation, which is consistent with 

the higher NRMSE at shorter wavelengths around 300 nm in Fig. 7. The largest kurtosis of Defect 2 for both training and test 

data indicates tails of the distributions are heavy compared to normal distribution, mostly from the radiances at shorter 

wavelengths. Considering that the overall prediction error is within 5% except for the ozone absorption lines, the prediction 220 

models for Defect 1-3 are well constructed for further bad pixel replacement. 

 
(a) 

 
(b) 

 
(c) 
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Figure 8 Prediction error of randomly collected training (blue) and test (yellow) datasets measured in March-April 2021 with the optimized 
models for Defect 1-3 (PCA-ANN for Defect 2 and PCA-Linear for Defect 1 and 3). Prediction error is calculated with the difference 
between the predicted and measured radiances divided by the latter. 

The training and test datasets presented in Fig. 7-8 are randomly collected spectra of GEMS measurements in March-225 

April 2021, which guarantees a basic assumption in machine learning that the underlying population should be identical for 

training and test data (Zhen and Li, 2008). However, in operation, the prediction model is obliged to be trained in advance 

with sufficient datasets for timely reproducing erroneous pixels of satellite measurements on a daily basis. This indicates the 

assumption might be violated if measurement characteristics of training and test data significantly change. To investigate 

further the effect, the prediction model is trained with training and test data measured in March and April 2021, respectively 230 

(see Fig. 9). The results show that histograms of test data for Defect 1-2 are more skewed than those of training data, when the 

measurement period of training and test datasets are separated. On the other hand, prediction for Defect 3 is independent to 

the measurement period of training and test data. This results indicate that the spectral features of GEMS spectra change 

profoundly as time goes by and the changes have strong spectral dependence within 300-500 nm. 

 
(a) 

 
(b) 

 
(c) 

Figure 9 Same as Fig. 8 with training and test datasets measured in March and April 2021, respectively. 235 

3.3 Application to bad pixel replacement 

In this section, the prediction model trained with randomly collected spectra in March-April 2021 is employed for reproducing 

real bad pixels of Defect 1-3 from GEMS measurements on 2 May 2021. It is demonstrated with visual inspection of radiance 

images and quantitative comparison between machine learning methods and spatial interpolation, the current operational 

method for bad pixels in the GEMS calibration system. Figure 10 shows earth radiance images of GEMS on a particular region 240 

(15° N, 102° E) affected by bad pixels of Defect 3, which has wider spatial width of bad pixels than that of Defect 1-2 along 

the N-S direction. Spatial discontinuity caused by bad pixels occurs as a horizontal line because GEMS scans the earth from 

east to west by sequentially recording scan images. Bad pixels of Defect 1-3 are stationary on the detector array, which causes 

measurements at certain latitudes unavailable. It is also noted that clouds are a main target making spatial discontinuity caused 

by bad pixels more noticeable with its high spatial variability. The spatial discontinuity is easily found in Fig. 10a because of 245 
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the bad pixels inaccurately replaced with spatial interpolation. The PCA-Linear for Defect 3 shows better performance because 

the bad pixel positions easily found in Fig. 10a are entirely indistinguishable in Fig. 10b. The improvement is also found in 

Defect 2 (not shown), but with its narrower spatial gap compared to Defect 3, the improved results with PCA-ANN for Defect 

2 is not visually recognizable. For Defect 1, the spatial width of bad pixels along the N-S direction is narrower (two pixels 

width along the N-S direction) than that of Defect 2-3, which presents no significant difference between PCA-Linear and 250 

spatial interpolation. 

 

(a) 

 

(b) 

Figure 10 Comparison of bad pixel replacement between (a) spatial interpolation and (b) the machine learning method for the radiance at 
487 nm for Defect 3 measured on 2 May 2021 (03 UTC). 

A closer inspection is performed to analyze the reproduced spectral features for Defect 2-3. In spectral analysis, the 

effectiveness of bad pixel replacement methods could be well demonstrated at the wavelengths where the input and output 255 

radiances are met. If the replacement is successful, the partly replaced spectrum should have continuous spectral features over 

the whole spectral range. The spectral range affected by bad pixels for each defect region is 300-400 nm and 484-491 nm, 

which corresponds to the range of output radiances for Defect 2-3, respectively. The rest part of a spectrum is input parameters 

for each defective region. As previously mentioned in Sect. 3.1., PCA-ANN shows better performance for Defect 2, while 

PCA-Linear is better for Defect 3 and thus each method is used for Defect 2 and 3, respectively. Figure 11 shows one of 260 

radiance spectra of Defect 2 and 3 from the GEMS measurement on 2 May 2021. For Defect 3 as shown in Fig. 11b, the 

reproduced spectrum with spatial interpolation shows totally unrealistic features compared to that with PCA-Linear because 

of the wider spatial gap of Defect 3. For Defect 2, however, the reproduced spectra with spatial interpolation and PCA-ANN 

show reasonable spectral features and the spectral discontinuity is not clearly discernible at the wavelength of 400 nm.  
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(a) 

 

(b) 

Figure 11 Radiance spectrum affected by bad pixels of (a) Defect 2 and (b) Defect 3 measured on 2 May 2021 (03 UTC). Bad pixel 265 
replacement is performed with spatial interpolation (red) and machine learning methods with PCA-ANN and PCA-Linear for Defect 2 and 
3, respectively. 

To deeply investigate the spectral features of replaced radiances for Defect 2-3, Fig. 12 analyzes reflectance spectra 

by dividing each radiance spectrum in Fig. 11 with the measured solar spectrum of GEMS. In reflectance, measurement noise 

from calibration processes could be cancelled out by normalizing earth radiance with measured solar irradiance. The 270 

Fraunhofer lines originating from the solar spectrum could also be cancelled out, which makes it easy to analyze spectral 

features of a spectrum without strong absorption lines. In Fig. 12a, spectral discontinuity with spatial interpolation is more 

obvious at 400 nm compared to the radiance spectrum in Fig 11a. For Defect 3, Fig. 12b also shows stable features with PCA-

Linear at the defective spectral range around 487 nm. It could also be seen that the measurement noise from the sensor could 

be successfully incorporated in the replaced spectrum with machine learning methods because the measured reflectance would 275 

have noise-like features if the noise is not properly reproduced in the radiance spectrum Consequently, the results indicate that 

the machine learning methods are good enough to properly reproduce spectrally and spatially continuous features using spectral 

relations of radiances in the UV/VIS spectrum.   

 

(a) 

 

(b) 

Figure 12 Same as Fig. 11 for reflectance spectrum affected by bad pixels of (a) Defect 2 and (b) Defect 3. 
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4 Conclusions 280 

In remote sensing, hyperspectral data in the UV/VIS spectral region are used to retrieve the information on atmospheric gases 

and aerosol properties. GEMS is an environmental sensor measuring hyperspectral radiances from 300 to 500 nm in the Asia-

Pacific region for timely atmospheric monitoring. During the IOT of GEMS, one of calibration issues was found that erroneous 

values of bad pixels on the detector array are not properly replaced with spatial interpolation, the current operational method 

of GEMS. It is clear that when the bad pixel area is too large, the spatial interpolation tends to cause high interpolation error 285 

especially for a scene having large spatial inhomogeneity (i.e. cloud edges). The high interpolation error of bad pixels could 

affect to the retrieval process, which causes horizontal discontinuity at a certain latitude for the retrieval of Level 2 products.  

To resolve the issue, this study suggests machine learning methods using PCA-ANN and PCA-Linear to fill in the 

spectral gap caused by bad pixels, denoted as Defect 1-3 in this study. The basic assumption of this approach is that radiances 

of a spectrum have strong linear and non-linear relations, which could be emulated with the ANN and multivariate linear 290 

regression. The spectral range of output radiances corresponds to the wavelengths of bad pixels, while the input radiances 

correspond to the rest part of a spectrum for Defect 1-3, respectively. Considering that input radiances have strong linear 

relations, dimensionality reduction with PCA is applied in the pre-processing step to reduce linear relations of input radiances 

and to increase computational efficiency of training process.  

In the results, PCA-Linear model presents smaller prediction error for the defect region having strong linear relations 295 

between input and output radiances (Defect 1) or having narrower spectral gap (Defect 3). The PCA-ANN model is better for 

the output radiances having strong non-linear relations with input radiances (Defect 2). The narrower the spectral range of 

output radiances is, the smaller the prediction error is because the prediction error of Defect 3 is around 0.5%, while it is around 

5% for Defect 1 and 2. When the trained model is applied to the actual bad pixels, the spectral gap of bad pixels is properly 

replaced presenting continuous spectral features especially for Defect 2 and 3. The bad pixel replacement with PCA-Linear 300 

and spatial interpolation for Defect 1 is almost same considering the narrower spatial gap of Defect 1.  

 To apply the methods in operation, however, it needs to be updated further to solve the following issues. The machine 

learning model, especially the PCA-ANN model, becomes highly unstable when measurement characteristics of training and 

test data significantly change. If measurements have high seasonal dependence, then the time lag between training and test 

data should be as shorter as possible to guarantee that both data are sampled from an identical population considering the basic 305 

premise of ANN. It is empirically found that the time lag between training and test data should not be over two weeks for 

GEMS which could be technically demanding in operation. Secondly, the radiance at shorter wavelengths (around 325 nm) of 

Defect 2 has high prediction error of over 5%, which is equivalent to the level of radiometric calibration error of GEMS. To 

increase prediction accuracy at strong absorption lines, it needs to be updated further. 

Considering that the number of bad pixels would increase in operation as did in Ozone Mapping and Profiler Suite 310 

(OMPS) (Seftor et al., 2014), an efficient way of replacing bad pixels would be necessary for the long-term operation of GEMS. 

It is also highly possible that an unexpected issue could occur such as the row-anomaly of Ozone Monitoring Instrument (OMI) 
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(Schenkeveld et al., 2017), machine learning methods suggested in this study can be a useful tool for filling in the spectral gap 

and increasing the number of data reserving measurement characteristics of the sensor.  
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